3 research outputs found

    New Delay-Range-Dependent Robust Exponential Stability Criteria of Uncertain Impulsive Switched Linear Systems with Mixed Interval Nondifferentiable Time-Varying Delays and Nonlinear Perturbations

    Get PDF
    We investigate the problem of robust exponential stability analysis for uncertain impulsive switched linear systems with time-varying delays and nonlinear perturbations. The time delays are continuous functions belonging to the given interval delays, which mean that the lower and upper bounds for the time-varying delays are available, but the delay functions are not necessary to be differentiable. The uncertainties under consideration are nonlinear time-varying parameter uncertainties and norm-bounded uncertainties, respectively. Based on the combination of mixed model transformation, Halanay inequality, utilization of zero equations, decomposition technique of coefficient matrices, and a common Lyapunov functional, new delay-range-dependent robust exponential stability criteria are established for the systems in terms of linear matrix inequalities (LMIs). A numerical example is presented to illustrate the effectiveness of the proposed method

    Improved Stability Criteria on Linear Systems with Distributed Interval Time-Varying Delays and Nonlinear Perturbations

    No full text
    The problem of delay-range-dependent stability analysis for linear systems with distributed time-varying delays and nonlinear perturbations is studied without using the model transformation and delay-decomposition approach. The less conservative stability criteria are obtained for the systems by constructing a new augmented Lyapunov–Krasovskii functional and various inequalities, which are presented in terms of linear matrix inequalities (LMIs). Four numerical examples are demonstrated for the results given to illustrate the effectiveness and improvement over other methods

    LMI-Based Results on Robust Exponential Passivity of Uncertain Neutral-Type Neural Networks with Mixed Interval Time-Varying Delays via the Reciprocally Convex Combination Technique

    No full text
    The issue of the robust exponential passivity analysis for uncertain neutral-type neural networks with mixed interval time-varying delays is discussed in this work. For our purpose, the lower bounds of the delays are allowed to be either positive or zero adopting the combination of the model transformation, various inequalities, the reciprocally convex combination, and suitable Lyapunov–Krasovskii functional. A new robust exponential passivity criterion is received and formulated in the form of linear matrix inequalities (LMIs). Moreover, a new exponential passivity criterion is also examined for systems without uncertainty. Four numerical examples indicate our potential results exceed the previous results
    corecore